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Abstract

This report revisits the lossless convexification (LCVX) method introduced by Açıkmeşe,
Carson, and Blackmore for minimum-fuel planetary soft landing [1]. After summarizing the the-
oretical foundations, we derive the continuous-time optimal-control formulation, show how non-
convex constraints are relaxed without loss of optimality, and present a reproducible Python/CVXPY
simulation that generates fuel-optimal trajectories subject to thrust magnitude and pointing lim-
its. Preliminary numerical results agree with the reference paper and highlight key trade-offs
between pointing-cone half-angle, time-of-flight, and fuel consumption.

Nomenclature

r position vector, m
v velocity vector, m s−1

m vehicle mass, kg
x state vector (r,v)
T thrust vector (control), N
u mass-normalised thrust T/m, m s−2

σ slack variable, ∥u∥ ≤ σ
z log mass, z = lnm
n unit vector (cone axis)
g gravitational acceleration, m s−2

ω planet rotation vector, rad s−1

ρ1, ρ2 min./max. thrust bounds, N
θ pointing-cone half-angle, deg
γgs glide-slope constraint angle, deg
α mass-flow coefficient (ṁ = −α∥T∥), sm−1

tf final time / burn duration, s
Vmax maximum allowed speed, m s−1

N number of discretisation nodes
SOCP second-order cone program
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1 Introduction

Powered-descent guidance is the terminal phase of planetary entry, descent, and landing (EDL),
requiring rapid generation of fuel-efficient trajectories under stringent constraints. The seminal
work of Açıkmeşe et al. [1] showed that the apparently non-convex soft-landing problem can be
reformulated as a second-order cone program (SOCP) whose solution is also optimal for the original
problem—lossless convexification.
Objective. Implement the LCVX algorithm from [1] and analyze how convexification enables
real-time trajectory optimization for aerospace vehicles.

Figure 1: Powered-descent trajectory generated by the LCVX solver. The translucent green surface
is the glide-slope cone (γgs = 30◦) and the blue surface is the thrust pointing (sensor view) cone
(θ = 120◦). Color encodes speed.
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2 Background on Convex Trajectory Optimization

2.1 Classical Optimal Control Formulation

We consider the powered-descent phase with state x = (r,v) ∈ R6 and control (thrust) T ∈ R3.

ṙ = v, (1)

v̇ = g +
1

m
T, (2)

ṁ = −α∥T∥, (3)

where m is mass and α relates propellant mass-flow to thrust.

2.2 Non-Convexities

Two constraints render the problem non-convex:

1. Throttle band: ρ1 ≤ ∥T(t)∥ ≤ ρ2 with ρ1 > 0.

2. Pointing cone: n⊤T(t) ≥ ∥T(t)∥ cos θ for half-angle θ.

A näıve discretization leads to a nonlinear program (NLP) ill-suited to on-board execution.

3 Lossless Convexification (LCVX)

3.1 Slack-Variable Relaxation

Introduce slack σ(t) ∈ R and define scaled thrust u(t) = T(t)/m(t) as in [1]. The control constraints
become:

∥u(t)∥ ≤ σ(t), n⊤u(t) ≥ σ(t) cos θ, (4)

ρ1e
−z(t) ≤ σ(t) ≤ ρ2e

−z(t), ż(t) = −ασ(t), z = lnm. (5)

Eqs. (4)–(5) are jointly convex after a second-order cone approximation of the exponential bounds.

3.2 Losslessness Theorem

Let (u⋆, σ⋆) solve the convex relaxation. Using Pontryagin’s Maximum Principle, Açıkmeşe et
al. show that ∥u⋆(t)∥ = σ⋆(t) a.e., so the solution also satisfies the original equality-magnitude
constraint, proving losslessness. Figure 2 illustrates how the optimizer selects an extreme point of
the feasible set.

4 Problem Statement for the Project

The soft landing problem considers:

• Initial state: r0,v0 given in the ECEF-like frame.

• Constraints: glide-slope angle γgs, velocity cap Vmax, thrust bounds ρ1, ρ2, pointing half-
angle θ.

• Objectives (lexicographic):
1. Minimize terminal position error;
2. Minimize propellant (

∫
σ dt).
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Figure 2: 2-D slice of the feasible-thrust set U(σ) = {Tc : ∥Tc∥ ≤ σ, n⊤Tc ≥ σ cos θ}. The optimiser
(via Pontryagin’s maximum principle) selects an extreme point T ⋆

c on the boundary, so ∥T ⋆
c ∥ = σ

and the convex relaxation is lossless.

5 Discretization and SOCP Formulation

5.1 Time Grid and State Transition

Divide the burn time tf into N nodes. For node k with step ∆t:

rk+1 = rk +∆tvk, (6)

vk+1 = vk +∆t(g + uk) , (7)

zk+1 = zk − α∆t σk. (8)

All equality constraints are linear; the control constraints are second-order cone (SOC) friendly.

5.2 Compact SOCP

min
X,U,σ,tf

N−1∑
k=0

σk ∆t

s.t. Linear dynamics above√
u⊤
k uk ≤ σk ∀k

n⊤uk ≥ σk cos θ

ρ1e
−zk ≤ σk ≤ ρ2e

−zk ,

vN = 0, rN,x = 0.
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6 Python Implementation

The optimization logic is wrapped in a reusable class PoweredDescentGuidance. Listing 1 shows
the interface; Listing 2 contains the two solver routines.

The full version-controlled source code is available on GitHub: github.com/Natsoulas/lcvx-pdg.

Listing 1: Header and common constraint routine

1 from typing import Tuple

2 import cvxpy as cp

3 import numpy as np

4 from .system_parameters import SystemParameters

5

6 class PoweredDescentGuidance:

7 """LCVX -based powered -descent guidance solver."""

8 def __init__(self , params: SystemParameters):

9 self.params = params # all constants live in one dataclass

10

11 # ---- common constraints shared by both optimisation stages ----

12 def _set_common_constraints(self , x: cp.Variable , z: cp.Variable ,

13 u: cp.Variable , sigma: cp.Variable):

14 p = self.params

15 cs = []

16

17 # boundary & dynamic constraints (abbrev .)

18 cs += [x[:,0] == p.x0 ,

19 z[0,0] == p.zi,

20 z[0,p.N-1] >= p.zf,

21 p.e1.T @ x[:3,p.N-1] == 0,

22 p.e1.T @ x[3:,p.N-1] == 0]

23

24 for k in range(p.N-1):

25 cs += [x[:,k+1] == x[:,k] +

26 (p.A @ x[:,k] + p.B @ (p.gravity + u[:,k])) * p.dt,

27 z[:,k+1] == z[:,k] - p.alpha * sigma[:,k]]

28

29 # thrust & pointing

30 cs += [cp.norm(u, axis =0) <= sigma ,

31 p.e1 @ u >= sigma * p.theta_cos]

32

33 # glide -slope

34 cs += [x[0,:] >= cp.norm(x[1:3], axis =0) * p.gamma_tan]

35 return cs

Listing 2: Minimum-error and minimum-fuel stages

1 # ------------- stage 1 : minimise landing error --------------

2 def solve_minimum_error(self):

3 p = self.params

4 x = cp.Variable ((6, p.N))

5 z = cp.Variable ((1, p.N))

6 u = cp.Variable ((3, p.N))

7 sigma = cp.Variable ((1, p.N))

8

9 J_err = 5*cp.norm(p.E @ x[:3,-1] - p.q) # position error
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10 J_smooth = 0.1*cp.sum_squares(cp.diff(sigma))# throttle smoothness

11 obj = cp.Minimize(J_err + J_smooth)

12

13 cs = self._set_common_constraints(x, z, u, sigma)

14 prob = cp.Problem(obj , cs); prob.solve(solver=cp.ECOS , verbose=

True)

15 return prob.status , x, u

16

17 # ------------- stage 2 : minimise fuel -----------------------

18 def solve_minimum_fuel(self , dP3: float):

19 p = self.params

20 x = cp.Variable ((6, p.N))

21 z = cp.Variable ((1, p.N))

22 u = cp.Variable ((3, p.N))

23 sigma = cp.Variable ((1, p.N))

24

25 obj = cp.Minimize(cp.sum(sigma) * p.dt)

26 cs = self._set_common_constraints(x, z, u, sigma)

27 cs += [cp.norm(p.E @ x[:3,-1] - p.q) <= dP3]

28 prob = cp.Problem(obj , cs); prob.solve(solver=cp.ECOS)

29 return prob.status , x, u, sigma , z

Usage.
pdg = PoweredDescentGuidance(sys_params) # set up solver

stat1 , x1 , u1 = pdg.solve_minimum_error () # Stage -1

stat2 , x2 , u2 , s2 , z = pdg.solve_minimum_fuel(

np.linalg.norm(x1.value [1:3, -1])) # Stage -2

Solver and resulting dynamics. After solving the SOCP, the software propagates the con-
tinuous dynamics with the optimal control profile to verify that fuel, pointing, and glide-slope
constraints are met. Position, velocity, throttle, and thrust-angle profiles are shown in 3.
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Figure 3: Time histories for the optimal solution. Top-left: thrust magnitude (solid) and slack
variable σ (dashed) coincide, verifying the lossless property ∥u∥ = σ. Top-right: pointing angle
stays below θ = 120◦. Bottom-left: speed stays under Vmax = 90m s−1. Bottom-right: mass profile.

7 Preliminary Results

• Baseline (no pointing constraint):
mfuel = 200.1 kg, tf = 44.6 s.

• θ = 90◦:
modest fuel/time increase; trajectory remains direct.

• θ = 45◦:
≈11% more fuel, ≈28% longer burn; path overshoots to respect the pointing cone (see Fig. 4).
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Figure 4: Ground-track in the Y –Z plane with the glide-slope constraint sector (orange). The
terminal point is at the origin, indicating < 1m planar error.

Interpretation: tightening the pointing envelope forces thrust vectors away from the direction
of gravity, requiring longer burns and higher propellant mass.

8 Monte-Carlo Robustness Analysis

To gauge sensitivity to state-estimation errors, an open-loop Monte-Carlo study with n = 1000
trials is implemented. Each trial perturbs the initial position (r0) by an isotropic Gaussian with
σy,z = 30 m (cross-range) and adds ±5 m s−1 noise to all velocity components before feeding the
state into the same two-stage LCVX solver. No feedback is applied after the plan is generated, so
the test reveals pure feed-forward robustness of the optimization.
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Figure 5: 3-D view of 1000Monte-Carlo trajectories (blue). The red marker is the target. All paths
remain inside the glide-slope envelope and converge to within centimeters of the touchdown point,
demonstrating geometric robustness of the convex formulation.
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Figure 6: Statistical outcomes over the Monte-Carlo set. Top-left: landing-error histogram—sub-
millimeter in all cases. Top-right: distribution of final vertical speed (constraint vf ≤ 2 m s−1

shown by the leftmost bar). Bottom-left: fuel-consumption spread (peak at 200 kg). Bottom-
right: landing error as a function of position perturbation—no discernible correlation.

Discussion. Even with meter-level initial-state errors the lossless-convex solution still lands
within a few millimeters of the target in the planar directions, as indicated by the delta-function-
like histogram in Fig. 6. The spread in the final vertical velocity (≈,0–9 ms−1) is dominated by
the velocity noise injected at the initial state; the optimization remains within the 10 m s−1 cap
in all runs. Fuel usage clusters around the deterministic optimum of 200 kg, confirming that the
guidance law does not over-throttle to compensate for modest state uncertainty.

9 Discussion and Improvement Ideas

1. Real-time feasibility. Warm-start plus ECOS/OSQP can solve the SOCP in < 50 ms on a
laptop CPU, supporting ≥10 Hz closed-loop updates.
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2. Robustness. Integrate a feedback outer loop (e.g. tube-MPC) to reject state-estimation
errors and un-modelled disturbances.

3. Extended dynamics. Include attitude states and torque limits; recent work shows convex
attitude-trajectory coupling via quaternion slack variables.

10 Conclusions

Lossless convexification converts the inherently non-convex powered-descent guidance problem into
a convex program that can be solved to global optimality with standard SOCP solvers. The
open-source Python/CVXPY implementation1 generates a full trajectory in O(50)ms on a laptop
CPU—well within on-board compute margins.

A n = 1000 Monte-Carlo campaign (Section 8) tested the open-loop robustness of the guidance
law under meter-level position and 5m/s velocity uncertainties at its initial state. Every trial:

• respected glide-slope and pointing-cone constraints,

• consumed 200± 4 kg of propellant (within 2% of the deterministic optimum), and

• touched down within millimeters of the target while remaining below the 10m/s final-velocity
cap.

These results confirm that the LCVX approach is not only optimal in theory but numerically
robust in practice, making it a strong candidate for real-time precision-landing flight software..
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I thank Blackmore, Carson, and Açıkmeşe for providing the original simulation parameters as well
as the ASEN 6020 lecturer Dr. Scheeres for approving this as a project topic.

References
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