
Lossless Convexification (LCVX) for Soft-Landing Trajectory

Optimization
With Implementation and Monte Carlo Analysis in Python

Niko Natsoulas
University of Colorado Boulder

ASEN 6020 — Optimal Trajectories

May 6, 2025

Abstract

This report revisits the lossless convexification (LCVX) method introduced by Açıkmeşe,
Carson, and Blackmore for minimum-fuel planetary soft landing [1]. After summarizing the the-
oretical foundations, we derive the continuous-time optimal-control formulation, show how non-
convex constraints are relaxed without loss of optimality, and present a reproducible Python/CVXPY
simulation that generates fuel-optimal trajectories subject to thrust magnitude and pointing lim-
its. Preliminary numerical results agree with the reference paper and highlight key trade-offs
between pointing-cone half-angle, time-of-flight, and fuel consumption.

Nomenclature

r position vector, m
v velocity vector, m s−1

m vehicle mass, kg
x state vector (r,v)
T thrust vector (control), N
u mass-normalised thrust T/m, m s−2

σ slack variable, ∥u∥ ≤ σ
z log mass, z = lnm
n unit vector (cone axis)
g gravitational acceleration, m s−2

ω planet rotation vector, rad s−1

ρ1, ρ2 min./max. thrust bounds, N
θ pointing-cone half-angle, deg
γgs glide-slope constraint angle, deg
α mass-flow coefficient (ṁ = −α∥T∥), sm−1

tf final time / burn duration, s
Vmax maximum allowed speed, m s−1

N number of discretisation nodes
SOCP second-order cone program

1

Contents

1 Introduction 3

2 Background on Convex Trajectory Optimization 4
2.1 Classical Optimal Control Formulation . 4
2.2 Non-Convexities . 4

3 Lossless Convexification (LCVX) 4
3.1 Slack-Variable Relaxation . 4
3.2 Losslessness Theorem . 4

4 Problem Statement for the Project 4

5 Discretization and SOCP Formulation 5
5.1 Time Grid and State Transition . 5
5.2 Compact SOCP . 5

6 Python Implementation 6

7 Preliminary Results 8

8 Monte-Carlo Robustness Analysis 9

9 Discussion and Improvement Ideas 11

10 Conclusions 12

2

1 Introduction

Powered-descent guidance is the terminal phase of planetary entry, descent, and landing (EDL),
requiring rapid generation of fuel-efficient trajectories under stringent constraints. The seminal
work of Açıkmeşe et al. [1] showed that the apparently non-convex soft-landing problem can be
reformulated as a second-order cone program (SOCP) whose solution is also optimal for the original
problem—lossless convexification.
Objective. Implement the LCVX algorithm from [1] and analyze how convexification enables
real-time trajectory optimization for aerospace vehicles.

Figure 1: Powered-descent trajectory generated by the LCVX solver. The translucent green surface
is the glide-slope cone (γgs = 30◦) and the blue surface is the thrust pointing (sensor view) cone
(θ = 120◦). Color encodes speed.

3

2 Background on Convex Trajectory Optimization

2.1 Classical Optimal Control Formulation

We consider the powered-descent phase with state x = (r,v) ∈ R6 and control (thrust) T ∈ R3.

ṙ = v, (1)

v̇ = g +
1

m
T, (2)

ṁ = −α∥T∥, (3)

where m is mass and α relates propellant mass-flow to thrust.

2.2 Non-Convexities

Two constraints render the problem non-convex:

1. Throttle band: ρ1 ≤ ∥T(t)∥ ≤ ρ2 with ρ1 > 0.

2. Pointing cone: n⊤T(t) ≥ ∥T(t)∥ cos θ for half-angle θ.

A näıve discretization leads to a nonlinear program (NLP) ill-suited to on-board execution.

3 Lossless Convexification (LCVX)

3.1 Slack-Variable Relaxation

Introduce slack σ(t) ∈ R and define scaled thrust u(t) = T(t)/m(t) as in [1]. The control constraints
become:

∥u(t)∥ ≤ σ(t), n⊤u(t) ≥ σ(t) cos θ, (4)

ρ1e
−z(t) ≤ σ(t) ≤ ρ2e

−z(t), ż(t) = −ασ(t), z = lnm. (5)

Eqs. (4)–(5) are jointly convex after a second-order cone approximation of the exponential bounds.

3.2 Losslessness Theorem

Let (u⋆, σ⋆) solve the convex relaxation. Using Pontryagin’s Maximum Principle, Açıkmeşe et
al. show that ∥u⋆(t)∥ = σ⋆(t) a.e., so the solution also satisfies the original equality-magnitude
constraint, proving losslessness. Figure 2 illustrates how the optimizer selects an extreme point of
the feasible set.

4 Problem Statement for the Project

The soft landing problem considers:

• Initial state: r0,v0 given in the ECEF-like frame.

• Constraints: glide-slope angle γgs, velocity cap Vmax, thrust bounds ρ1, ρ2, pointing half-
angle θ.

• Objectives (lexicographic):
1. Minimize terminal position error;
2. Minimize propellant (

∫
σ dt).

4

Tc,y

Tc,x

T ⋆
c

U(1.0)

1.0 cos θ

1.0

Figure 2: 2-D slice of the feasible-thrust set U(σ) = {Tc : ∥Tc∥ ≤ σ, n⊤Tc ≥ σ cos θ}. The optimiser
(via Pontryagin’s maximum principle) selects an extreme point T ⋆

c on the boundary, so ∥T ⋆
c ∥ = σ

and the convex relaxation is lossless.

5 Discretization and SOCP Formulation

5.1 Time Grid and State Transition

Divide the burn time tf into N nodes. For node k with step ∆t:

rk+1 = rk +∆tvk, (6)

vk+1 = vk +∆t(g + uk) , (7)

zk+1 = zk − α∆t σk. (8)

All equality constraints are linear; the control constraints are second-order cone (SOC) friendly.

5.2 Compact SOCP

min
X,U,σ,tf

N−1∑
k=0

σk ∆t

s.t. Linear dynamics above√
u⊤
k uk ≤ σk ∀k

n⊤uk ≥ σk cos θ

ρ1e
−zk ≤ σk ≤ ρ2e

−zk ,

vN = 0, rN,x = 0.

5

6 Python Implementation

The optimization logic is wrapped in a reusable class PoweredDescentGuidance. Listing 1 shows
the interface; Listing 2 contains the two solver routines.

The full version-controlled source code is available on GitHub: github.com/Natsoulas/lcvx-pdg.

Listing 1: Header and common constraint routine

1 from typing import Tuple

2 import cvxpy as cp

3 import numpy as np

4 from .system_parameters import SystemParameters

5

6 class PoweredDescentGuidance:

7 """LCVX -based powered -descent guidance solver."""

8 def __init__(self , params: SystemParameters):

9 self.params = params # all constants live in one dataclass

10

11 # ---- common constraints shared by both optimisation stages ----

12 def _set_common_constraints(self , x: cp.Variable , z: cp.Variable ,

13 u: cp.Variable , sigma: cp.Variable):

14 p = self.params

15 cs = []

16

17 # boundary & dynamic constraints (abbrev .)

18 cs += [x[:,0] == p.x0 ,

19 z[0,0] == p.zi,

20 z[0,p.N-1] >= p.zf,

21 p.e1.T @ x[:3,p.N-1] == 0,

22 p.e1.T @ x[3:,p.N-1] == 0]

23

24 for k in range(p.N-1):

25 cs += [x[:,k+1] == x[:,k] +

26 (p.A @ x[:,k] + p.B @ (p.gravity + u[:,k])) * p.dt,

27 z[:,k+1] == z[:,k] - p.alpha * sigma[:,k]]

28

29 # thrust & pointing

30 cs += [cp.norm(u, axis =0) <= sigma ,

31 p.e1 @ u >= sigma * p.theta_cos]

32

33 # glide -slope

34 cs += [x[0,:] >= cp.norm(x[1:3], axis =0) * p.gamma_tan]

35 return cs

Listing 2: Minimum-error and minimum-fuel stages

1 # ------------- stage 1 : minimise landing error --------------

2 def solve_minimum_error(self):

3 p = self.params

4 x = cp.Variable ((6, p.N))

5 z = cp.Variable ((1, p.N))

6 u = cp.Variable ((3, p.N))

7 sigma = cp.Variable ((1, p.N))

8

9 J_err = 5*cp.norm(p.E @ x[:3,-1] - p.q) # position error

6

https://github.com/Natsoulas/lcvx-pdg

10 J_smooth = 0.1*cp.sum_squares(cp.diff(sigma))# throttle smoothness

11 obj = cp.Minimize(J_err + J_smooth)

12

13 cs = self._set_common_constraints(x, z, u, sigma)

14 prob = cp.Problem(obj , cs); prob.solve(solver=cp.ECOS , verbose=

True)

15 return prob.status , x, u

16

17 # ------------- stage 2 : minimise fuel -----------------------

18 def solve_minimum_fuel(self , dP3: float):

19 p = self.params

20 x = cp.Variable ((6, p.N))

21 z = cp.Variable ((1, p.N))

22 u = cp.Variable ((3, p.N))

23 sigma = cp.Variable ((1, p.N))

24

25 obj = cp.Minimize(cp.sum(sigma) * p.dt)

26 cs = self._set_common_constraints(x, z, u, sigma)

27 cs += [cp.norm(p.E @ x[:3,-1] - p.q) <= dP3]

28 prob = cp.Problem(obj , cs); prob.solve(solver=cp.ECOS)

29 return prob.status , x, u, sigma , z

Usage.
pdg = PoweredDescentGuidance(sys_params) # set up solver

stat1 , x1 , u1 = pdg.solve_minimum_error () # Stage -1

stat2 , x2 , u2 , s2 , z = pdg.solve_minimum_fuel(

np.linalg.norm(x1.value [1:3, -1])) # Stage -2

Solver and resulting dynamics. After solving the SOCP, the software propagates the con-
tinuous dynamics with the optimal control profile to verify that fuel, pointing, and glide-slope
constraints are met. Position, velocity, throttle, and thrust-angle profiles are shown in 3.

7

Figure 3: Time histories for the optimal solution. Top-left: thrust magnitude (solid) and slack
variable σ (dashed) coincide, verifying the lossless property ∥u∥ = σ. Top-right: pointing angle
stays below θ = 120◦. Bottom-left: speed stays under Vmax = 90m s−1. Bottom-right: mass profile.

7 Preliminary Results

• Baseline (no pointing constraint):
mfuel = 200.1 kg, tf = 44.6 s.

• θ = 90◦:
modest fuel/time increase; trajectory remains direct.

• θ = 45◦:
≈11% more fuel, ≈28% longer burn; path overshoots to respect the pointing cone (see Fig. 4).

8

Figure 4: Ground-track in the Y –Z plane with the glide-slope constraint sector (orange). The
terminal point is at the origin, indicating < 1m planar error.

Interpretation: tightening the pointing envelope forces thrust vectors away from the direction
of gravity, requiring longer burns and higher propellant mass.

8 Monte-Carlo Robustness Analysis

To gauge sensitivity to state-estimation errors, an open-loop Monte-Carlo study with n = 1000
trials is implemented. Each trial perturbs the initial position (r0) by an isotropic Gaussian with
σy,z = 30 m (cross-range) and adds ±5 m s−1 noise to all velocity components before feeding the
state into the same two-stage LCVX solver. No feedback is applied after the plan is generated, so
the test reveals pure feed-forward robustness of the optimization.

9

Figure 5: 3-D view of 1000Monte-Carlo trajectories (blue). The red marker is the target. All paths
remain inside the glide-slope envelope and converge to within centimeters of the touchdown point,
demonstrating geometric robustness of the convex formulation.

10

Figure 6: Statistical outcomes over the Monte-Carlo set. Top-left: landing-error histogram—sub-
millimeter in all cases. Top-right: distribution of final vertical speed (constraint vf ≤ 2 m s−1

shown by the leftmost bar). Bottom-left: fuel-consumption spread (peak at 200 kg). Bottom-
right: landing error as a function of position perturbation—no discernible correlation.

Discussion. Even with meter-level initial-state errors the lossless-convex solution still lands
within a few millimeters of the target in the planar directions, as indicated by the delta-function-
like histogram in Fig. 6. The spread in the final vertical velocity (≈,0–9 ms−1) is dominated by
the velocity noise injected at the initial state; the optimization remains within the 10 m s−1 cap
in all runs. Fuel usage clusters around the deterministic optimum of 200 kg, confirming that the
guidance law does not over-throttle to compensate for modest state uncertainty.

9 Discussion and Improvement Ideas

1. Real-time feasibility. Warm-start plus ECOS/OSQP can solve the SOCP in < 50 ms on a
laptop CPU, supporting ≥10 Hz closed-loop updates.

11

2. Robustness. Integrate a feedback outer loop (e.g. tube-MPC) to reject state-estimation
errors and un-modelled disturbances.

3. Extended dynamics. Include attitude states and torque limits; recent work shows convex
attitude-trajectory coupling via quaternion slack variables.

10 Conclusions

Lossless convexification converts the inherently non-convex powered-descent guidance problem into
a convex program that can be solved to global optimality with standard SOCP solvers. The
open-source Python/CVXPY implementation1 generates a full trajectory in O(50)ms on a laptop
CPU—well within on-board compute margins.

A n = 1000 Monte-Carlo campaign (Section 8) tested the open-loop robustness of the guidance
law under meter-level position and 5m/s velocity uncertainties at its initial state. Every trial:

• respected glide-slope and pointing-cone constraints,

• consumed 200± 4 kg of propellant (within 2% of the deterministic optimum), and

• touched down within millimeters of the target while remaining below the 10m/s final-velocity
cap.

These results confirm that the LCVX approach is not only optimal in theory but numerically
robust in practice, making it a strong candidate for real-time precision-landing flight software..

Acknowledgements

I thank Blackmore, Carson, and Açıkmeşe for providing the original simulation parameters as well
as the ASEN 6020 lecturer Dr. Scheeres for approving this as a project topic.

References

[1] B. Açıkmeşe, J. M. C. III, and L. Blackmore, “Lossless convexification of nonconvex control
bound and pointing constraints of the soft landing optimal control problem,” IEEE Transactions
on Control Systems Technology, vol. 21, no. 6, pp. 2104–2113, 2013.

1https://github.com/Natsoulas/lcvx-pdg

12

https://github.com/Natsoulas/lcvx-pdg

	Introduction
	Background on Convex Trajectory Optimization
	Classical Optimal Control Formulation
	Non-Convexities

	Lossless Convexification (LCVX)
	Slack-Variable Relaxation
	Losslessness Theorem

	Problem Statement for the Project
	Discretization and SOCP Formulation
	Time Grid and State Transition
	Compact SOCP

	Python Implementation
	Preliminary Results
	Monte-Carlo Robustness Analysis
	Discussion and Improvement Ideas
	Conclusions

