
PID Control for Espresso Brewing Temperature

Nicholas Natsoulas ∗ and Yanran Kuang†

Cornell University Mechanical and Aerospace Engineering, Ithaca, New York, 14850

Dmitry Savransky‡

Cornell University Mechanical and Aerospace Engineering, Ithaca, New York, 14850

This study introduces a Proportional-Integral-Derivative (PID) control system to enhance the

active brew temperature control of a typical home espresso machine, surpassing the performance

of its default thermostat control. Utilizing thermocouples for real-time temperature sensing,

a microcontroller for reading sensors and commanding control output, and a Solid-State

Relay (SSR) for modulating the heating element, the PID control system ensures precise and

responsive temperature regulation during espresso brewing. Experimental results demonstrate

superior temperature stability, minimizing fluctuations and enabling quick responses to varying

conditions. The simplicity of the implemented system makes it an accessible, low-cost upgrade

for coffee enthusiasts seeking refined control without extensive modifications to their Rancilio

Silvia Espresso machine. This research contributes to improving espresso brewing optimization

and highlights the potential of PID control in enhancing the performance of consumer-grade

coffee equipment.

Nomenclature
(unless specified, all entries are either unitless or use base S.I. units)

𝑒 = error

𝑒𝑑 = derivative error

𝑒𝑖 = integral error

𝐾𝑑 = derivative gain

𝐾𝑖 = integral gain

𝐾𝑝 = proportional gain

𝜇 = arithmetic mean

𝜇̄ = arithmetic mean of arithmetic means

𝜎2 = variance

∗Undergraduate Researcher, Cornell Mechanical and Aerospace Engineering
†Graduate Researcher, Cornell Mechanical and Aerospace Engineering.
‡DGS for Theoretical and Applied Mechanics, Associate Professor, Cornell Mechanical and Aerospace Engineering.

𝜎2
𝜇 = variance of arithmetic means

𝑇 = temperature in degrees Celsius

𝑢 = control signal

Contents

I Introduction 4

II Design 4

II.A Parts selection . 4

II.B Build . 5

II.B.1 Visual Walk-through . 6

II.B.2 Build Iteration Process . 11

II.C PID Control Algorithm . 11

II.C.1 Proportional Gain (𝐾𝑝) . 12

II.C.2 Integral Gain (𝐾𝑖) . 12

II.C.3 Derivative Gain (𝐾𝑑) . 12

II.C.4 Overall PID Controller Output . 12

II.C.5 PID Controller Tuning . 12

II.D Control Algorithm Software . 14

II.E Controller Tuning . 14

II.E.1 Gain Tuning Iteration Process . 15

III Testing 15

III.A Embedded Software Integration . 15

III.B Start Data Acquisition . 15

III.C Heating . 15

III.D Brewing . 16

III.E Save-off Data . 16

IV Analysis 16

IV.A Data Collection . 16

V Results 17

V.A PID Performance . 20

2

V.B Comparison to Default Thermostat . 20

V.C Next Steps . 21

V.C.1 Hardware Solution for Thermocouple Placement . 21

V.C.2 Controller Tuning . 21

V.C.3 Filtering . 21

VI Conclusion 21

VIIAppendix 22

VIIIFunding Source 27

IX Acknowledgments 27

3

I. Introduction

Coffee is the most consumed beverage globally besides water. High-quality espresso coffee is in high demand

since it is the base of popular coffee drinks such as espresso, cappuccino, latte, macchiato, mocha, and many iced

coffee beverages. One major problem facing the average coffee consumer is accessibility to high-quality espresso coffee

at home. In addition to coffee bean and ground quality, the key determinant of an espresso shot’s quality is the brew

water’s temperature. Typical espresso machines utilize the thermostat, the simplest form of active control for brewing

water temperature. Just as a home thermostat works for heating during the winter, there is a temperature threshold for

when the heating should be on or off. This threshold is relative to the desired temperature, the setpoint. This thermostat

method is an example of bang-bang control, often resulting in a large steady-state error. Large steady-state errors

mean that the setpoint is often over or under-shot when brewing, resulting in low-quality espresso that lacks a robust

flavor profile. PID control offers an intuitive, high-precision alternative to thermostat control. An increased precision

translates to consistently maintaining a temperature within the range required for the best extraction and flavor profile [1].

Considering this range is around 92-96°C, there is insufficient margin for large steady-state brew temperature error. The

following sections present the design of a low-cost PID control system for temperature control on a Rancilio Silvia home

espresso machine and showcase statistical analysis that compares it against the thermostat temperature control system.

II. Design

A. Parts selection

The main objective of this project is to improve the brewing function of a Rancilio Silvia Espresso machine (the

Miss Silvia Model) by achieving precise temperature control within a 1-degree Celsius margin. To this end, the brew

thermostat on the espresso machine is replaced with the PID control system components. Each component is explained

below.

Type K thermocouples are the most widely used due to their broad temperature range, high sensitivity, and low

cost. Type K thermocouples have an operational temperature range from -210°C to 1090°C, which makes them suitable

for recording temperature at the boiling element of the espresso machine and directly within the water stream of the

machine.

The Arduino Uno is a microcontroller board that provides a platform for programming and executing the PID control

algorithm. The open-source Arduino integrated development environment(IDE) makes the development and upload of

software to any Arduino board quick. The Arduino Uno has General Purpose Input/Output (GPIO) and analog pins that

allow it to interface seamlessly with the control system’s actuator and sensors. The control algorithm stabilizes the

water’s brew temperature. The thermocouple amplifier interfaces the voltage signals the thermocouples send to the

microcontroller. The AD8495 is designed explicitly for interfacing with thermocouples and converting their output to a

4

voltage signal that the Arduino can process. Compared to other Adafruit models, such as the MAX3185, the initial

model used, the AD8495, produces less noise and can sample signals at a higher frequency, leading to more accurate

results.

The Solid State Relay (SSR) controls the power supplied to the heating element of the espresso machine. SSRs

are preferred for PID controllers due to their fast switching capability and reliability. The SSR receives scaled control

output from the Arduino Uno and outputs load current to the espresso machine, thus effectively activating the heating

element. The SSR acts as a switch controlled by the DC input signal. The SSR replicates the typical behavior of the

heating process in espresso machines: the heating element is turned on and off to maintain a stable temperature. The

thermostat monitors the water temperature and activates the heating element as needed. Similarly, the SSR turns the

heating element on and off as needed.

Lastly, miscellaneous components are used to build and assemble the controller circuit. These components include a

breadboard, spade connectors, ring connectors, jumper wires, 14-gauge wires, and a crimping kit.

The list of parts used in the build is shown in Table 1 below:

Table 1 Parts List

Parts Name Quantity

Arduino Uno Rev3 1

Adafruit Analog Output K-Type Thermocouple Amplifier - AD8495 2

2M K-Type Temperature Sensor - Thermocouple 2

SSR-40DA 40A Solid State Relay 1

Breadboard Jumper Wires - Assorted ; 10cm 10+

Piggyback Spade Connectors 1/4" 22-10 AWG 2

Crimp Connectors - Assorted 10+

14 Gauge Wire 10 feet

Ring Connectors 1/4" 2

B. Build

The build of the brew temperature control system for the Rancilio Silvia Espresso Machine consists of the assembly

of the control system hardware and the system’s integration with the machine.

5

The parts in Table 1 are configured to wire the thermocouples’ breakout boards and the SSR to the microcontroller.

This allows the embedded software to actuate the SSR by providing voltage to an output pin and sense temperature by

reading the voltage of input pins. The SSR is wired to the heating element so that upon the microcontroller’s command,

it sends a current to the heating element, thus increasing the system’s temperature. Since the control algorithm discussed

in the next section regulates the temperature of two distinct features of the system —the boiler’s external surface tem-

perature and the brewing water temperature— the two thermocouples are fixed to their respective locations on the machine.

The visual walk-through (Figures 1, 2, 3, 4, 5, 6, and 7) below provides a clear sense of the final assembly,

which includes the build’s wiring and thermocouple placement.

1. Visual Walk-through

Fig. 1 The Full Assembly for Brew Tests

6

Fig. 2 The Arduino Uno Microcontroller

Fig. 3 AD8495 Type-K Thermocouple Amplifiers (Breakout Boards)

7

In Figure 3, the Type-K thermocouples are attached to their respective ADA8495 breakout boards. These breakout

boards are on a breadboard to simplify design iteration and debugging.

Fig. 4 Solid State Relay

8

Fig. 5 Water Boiler with Thermostat Installed

In Figure 5, the boiler beneath the machine’s top casing is in its default configuration for thermostat temperature

control. The brew thermostat is the tan cylindrical component with a red dot on the right side of its tab. The blue wire,

albeit not an original part of the system, is the boiler thermocouple and is necessary for data acquisition during testing

of the default temperature control.

9

Fig. 6 Water Boiler with PID Control System Installed

In Figure 6, the boiler is in its modified configuration for PID temperature control. Notice that the brew thermostat

is no longer included and that the thermocouple remains fixed in the same threaded hole. The spade connector with a

white plastic protector and a translucent blue crimp connects the SSR’s output wire (14-gauge) and the heating element.

Fig. 7 Brewing Water Thermocouple Placement

10

This placement for the brewing thermocouple, as shown in Figure 7, permits the best brewing water temperature

measurement without modifying the machine’s hardware or structure. Testing without a puck of ground coffee in the

portafilter ensures that the water flows directly over the thermocouple and is closest to the temperature of the water if it

were brewing coffee in the portafilter. Note that the placement of this thermocouple inside the portafilter and above the

coffee grounds yields inaccurate and noisy brew temperature readings compared to the chosen placement.

2. Build Iteration Process

Several locations to attach the thermocouple were considered.

The boiler thermocouple was initially placed directly beneath the brew thermostat. However, a layer of insulating

paste between the thermostat and the heating element prevented accurate measurements due to the thermocouple’s

sensitivity. The boiler thermocouple was eventually placed inside the threaded hole on top of the heating element, where

it once secured one of two screws for the brew thermostat. This positions it closer to the highly electrically resistant

coils that generate heat.

Determining the placement of the brew thermocouple involved trials and testing. Initially, the consideration was to

place the thermocouple sensor downstream of the water stream after the water passed through the heating element and

before making contact with the puck between the eco space group nickel and gasket undertorque miss (to understand

these part names, refer to Figure 14 in the appendix). However, experimentation revealed that this placement interfered

with the seal of the space group nickel, leading to leakage. Placement within the filter holder, or metal puck, was also

considered. However, testing showed that the temperature profile was extremely noisy and inconsistent. The temperature

distribution within the metal puck, especially with the coffee ground, is not uniform, likely resulting in unreliable

measurements by the thermocouple. Thus, the optimal location chosen was in the whole 2-dose beak of the filter holder,

shown in Figure 7.

The initial model utilized the Adafruit MAX31865 breakout boards/amplifiers. Testing revealed that this model

was not ideal for this project. The control algorithm samples and sends out control outputs a thousand times per

second. However, the MAX3185 breakout board had a lower sampling frequency. This was evident from the time delay

between the control output and SSR activation. During testing, it was observed that the boiler and brewing temperatures

consistently overshoot because the temperature measurements received by the controller are several time steps behind.

As a result, the Adafruit AD8495 model was selected to reduce time delay.

C. PID Control Algorithm

The control algorithm employs Proportional-Integral-Derivative (PID) control to regulate the temperatures of the

brewing water and the boiler. The subsections 1-5 below provide a high-level summary of PID control.

11

1. Proportional Gain (𝐾𝑝)

The proportional term is based on the current error, which is the difference between the desired setpoint (𝑆𝑃) and

the actual process variable (𝑃𝑉). The proportional gain is denoted by 𝐾𝑝 . The controller output is proportional to the

current error.

𝑃 = 𝐾𝑝 · e (1)

2. Integral Gain (𝐾𝑖)

The integral term is based on the accumulation of past errors over time. It helps to eliminate the steady-state error

and reduce the impact of accumulated error. The integral gain is denoted by 𝐾𝑖 .

𝐼 = 𝐾𝑖 ·
∫ 𝑡

0
e 𝑑𝑡 = 𝐾𝑖𝑒𝑖 (2)

3. Derivative Gain (𝐾𝑑)

The derivative term is based on the rate of change of the error. It anticipates future behavior and helps to dampen

the system’s response to prevent overshooting. The derivative gain is denoted by 𝐾𝑑 .

𝐷 = 𝐾𝑑 · 𝑑
𝑑𝑡

e = 𝐾𝑑 · 𝑑
𝑑𝑡
𝑒𝑑 (3)

4. Overall PID Controller Output

The overall controller output (𝑢) is the sum of the proportional, integral, and derivative terms:

𝑢 = 𝑃 + 𝐼 + 𝐷 (4)

5. PID Controller Tuning

• Increasing 𝐾𝑝 amplifies the response to the current error.

• Increasing 𝐾𝑖 reduces steady-state error and helps eliminate accumulated error over time.

• Increasing 𝐾𝑑 dampens the system’s response, reducing overshooting.

Balancing these gains is crucial for achieving a stable and responsive control system. Adjusting these gains to

achieve the desired system performance is called tuning.

The PID gains for the brew water temperature and the boiler temperature are specified by the constants:

𝐾𝑝brew , 𝐾𝑖brew , 𝐾𝑑brew

12

𝐾𝑝boiler , 𝐾𝑖boiler , 𝐾𝑑boiler

which provides one set of gains to the brew temperature control and another to the boiler temperature control.

The system measures temperatures using thermocouples connected to analog pins of the microcontroller for the

brewing water and the boiler. The raw analog readings are converted into temperature values using predefined calibration

constants and a linear conversion formula.

The PID control loop calculates the error between the desired temperature setpoints 𝑇brew and 𝑇boiler and the current

temperatures. The integral and derivative terms are accumulated and computed to adjust the control output, which is

then scaled to fit within the microcontroller’s voltage range of zero to five volts. A heuristic is applied to this voltage

output to create a switch functionality. Any voltage above a threshold is mapped to the full five-volt signal, whereas

anything below is mapped to zero volts. If the voltage input is 3 volts or above, the SSR supplies current to the heating

element and otherwise provides no current. The switch for the control output is helpful since it is a fundamental

implementation of a pulse modulator for the control output signal.

The control output is applied to the system via the microcontroller’s assigned output pin, which sends voltage to the

SSR. The brew water control output is used when the brew process is active; otherwise, the boiler control output is used.

The algorithm continuously monitors the system, updating control outputs based on temperature readings and

maintaining PID calculations. It also tracks the progress of the brew process and constantly checks if the boiler’s

setpoint is reached, which permits the brew functionality. Brew must occur after the boiler’s setpoint has been reached,

as the brew temperature depends on the boiler’s temperature before brewing.

This control algorithm design ensures precise regulation of both brew water and boiler temperatures during operation.

There are two distinct PID controllers utilized for temperature control. One for each operating mode: heating and

brewing. The boiler temperature is the control variable during the heating mode, whereas the brew water temperature is the

control variable during the brewing mode. The diagram below in Figure 8 is a high-level overview of this control scheme.

13

Fig. 8 Control Algorithm Block Diagram

D. Control Algorithm Software

The control algorithm software is in C++ and is compatible with the Arduino Uno microcontroller. This software is

uploaded to the microcontroller via the Arduino IDE and runs continuously as long as the controller is powered. The

software runs on the microcontroller with a sampling time of one millisecond. This high-frequency sampling time is a

safe design choice since the brewing process is on the order of seconds, and the controller requires hundreds of steps to

converge. The software utilizes many function definitions for modularity and readability of the main control loop. For

more detail, consult the software in Listing 1 in the appendix.

E. Controller Tuning

Performance metrics helped to determine the gain values for the PID controllers. The controller should stabilize the

overall system, have a rise time <= 1.00 seconds, minimize overshoot, and avoid integral windup. The gain values found

to meet these goals are summarized in table 2

14

Table 2 Gain Values for Boiler and Brew PID Controllers

Controller Gain Values
𝐾𝑝 𝐾𝑖 𝐾𝑑

Boiler 1 0.001 10
Brew 10 0.00001 15

1. Gain Tuning Iteration Process

A simplified PID model that estimated the dynamic of the heating element warming up was used in Simulink to

experiment with different gain values. The preliminary gain values selected were K𝑝 = 0.431, K𝑖 = 0.0205, K𝑑 = 0.04.

These gain values were initially implemented on the brew and boiler controllers and tested in real time. Testing revealed

that integral error accumulates rapidly in both systems, especially for the brew system because the espresso machine

was heating up from room temperature. As a result, in the first two to three minutes of the trial, the brew thermocouple

measures at or close to room temperature, making it prone to integral windup. Thus, the integral gain for both systems

was adjusted such that the integral term is orders of magnitude smaller than the proportional and derivative gains.

Furthermore, the brew and boiler temperatures were overshooting past their set points. To minimize overshoot, the

proportional and derivative gains were increased. Multiple trials and testing were conducted to adjust the three gain

values.

III. Testing
Once the build and the tuning are configured, as explained in a prior section, the general testing procedure is outlined

in the following subsections:

A. Embedded Software Integration

Upload the embedded software to the Arduino Uno microcontroller via the Arduino IDE. Connect the Arduino Uno

to a personal computer throughout the test for ease of design iteration and data acquisition.

B. Start Data Acquisition

Start the data acquisition immediately. The data printed per iteration, as mentioned in Table 3 in the Analysis section,

is collected from the IDE’s serial monitor into a CSV file via a plug-in called Arduspreadsheet [2]. Arduspreadsheet is

an open-source tool that can be installed onto legacy versions of the Arduino IDE.

C. Heating

Assuming the machine starts from room temperature, the PID controller heats the boiler until the setpoint is reached.

This typically takes around two minutes. The heating is finished once the boiler temperature settles within one °Celsius

15

of its setpoint, which in this case is 106 °C. A flag is printed to the IDE serial monitor when the thermocouple reads

within one °C of the setpoint.

D. Brewing

Initiate brewing at any point following the heating process. The brewing is started by manually flipping the brew

switch on the espresso machine, just as one does for operating the default configuration. Brewing should last between

three and ten seconds to acquire sufficient data for post-processing.

E. Save-off Data

Manually name and save the data onto a personal computer for further analysis.

IV. Analysis

A. Data Collection

Data was collected from the start of each trial while the boiler was at room temperature to the end of one shot worth

of coffee, which is approximately three seconds of the dispensing from the espresso machine. For each timestep, an

array of measurements were recorded. The array consists of the following variables.

Table 3 Variables in Data Array

Variable Name
Time (𝜇s)

Brewing Temperature (°C)

Scaled Control Output for Brewing

Brew Start Flag

Brew Counter

Proportional Error for Brewing

Integral Error for Brewing

Derivative Error for Brewing

Boiler Temperature (°C)

Scaled Control Output for Boiler

Boiler Error percentage

Proportional Error for Boiler

Integral Error for Boiler

Derivative Error for Boiler

Boiler Setpoint Reached Flag

16

Measurements recorded at each time step are stored in a CSV file. For data analysis, the data set was parsed, such

that the elapsed time starts at time of brew (when the brew button was hit), and 4.5 seconds after. This period accounts

for the time for the espresso machine to dispense one shot worth of coffee and for the brew temperature to stabilize into

a steady state.

V. Results
Five trials each were conducted for the thermostat-controlled machine and the PID-controlled machine. Temperature

results across all five trials were collected in an array. The mean was calculated and stored in another data array for each

trial. Both arrays were utilized for statistical analysis. The Table 4 below summarizes the findings.

Fig. 9 Temperature of Brew vs Time Elapsed. Set of Five Trials in PID Control Testing

17

Fig. 10 Exploded View of a Brewing Trial with PID Control

Fig. 11 Temperature of Brew vs Time Elapsed. Set of Five Trials of the Thermostat-Controlled Machine

18

Fig. 12 Exploded View of a Brewing Trial with Thermostat Control

Table 4 Summary of Trials

Control Scheme 𝜇𝑇𝑏𝑟𝑒𝑤 (°C) 𝜎2
𝑇𝑏𝑟𝑒𝑤

𝜇̄𝑇𝑏𝑟𝑒𝑤 (°C) 𝜎2
𝜇

Thermostat 98.991 13.7181 98.991 15.0845

PID 95.5838 1.4929 95.5838 0.824

19

Fig. 13 Distributions of Brew Temperature

The temperature of the brew thermostat, in direct contact with the water stream, was recorded over time. The raw

signals often demonstrate a noisy pattern due to the thermocouple’s measurement error limitation. The raw signals

were filtered by calculating the moving average. For Figures 9 to 12, the raw signal, the moving average with a five

datapoint window, and the moving average with a ten datapoint window are plotted.

A. PID Performance

For the PID controlled machine, the desired temperature for brewing is 95 °C. Figures 9 and 10 show the temperature

in the hot water stream over the 4.5 second period. The average brew temperature in five trials was 95.5838 °Celsius,

same as the average of the five means. The variance in temperature across five trials was 1.4929, and the variance of the

means was 0.824. The average brew temperature is within the optimal range of 92-96°C [1]. The percent difference

between the average temperature and the set point of 95 °Celsius is 1.4929 %. The percent difference between the

average of the mean temperatures and the set point of 95 °Celsius is 0.8240 %.

B. Comparison to Default Thermostat

The thermostat control’s performance was compared in Figures 11 and 12.

20

The average temperature maintained by the thermostat control is not within the proposed optimal brew range.

Furthermore, the variance of the average temperature for the thermostat control is greater than that for the PID control.

Figure 13 shows the average temperature distributions. This implies that the PID-controlled machine can maintain a

more consistent and stable temperature profile during brewing. The lower variance in temperature indicates that the PID

control system effectively regulates the heating element, minimizing temperature fluctuations and ensuring that the

water temperature remains closer to the desired set point.

C. Next Steps

Note that the steps are ordered by priority.

1. Hardware Solution for Thermocouple Placement

The thermocouple placements of this build are intended to measure the temperature change near the heating element

and the temperature of the brewing water. Hardware modification is necessary to place the thermocouples to measure

these temperatures more directly and reliably with less delay and noise. Disassembly of the espresso machine may be

required, especially for boiler and filter assembly modifications.

2. Controller Tuning

The gain values for the brewing and boiler controllers are sufficient to drive the brew temperature to the setpoint of

95 °C. However, the boiler system slightly overshoots over the set point of 106 °C when the boiler first starts at room

temperature. Further tuning of PID gains for the boiler system is necessary to minimize overshoot. Otherwise, when the

boiler overheats, more time is allocated to converging to the setpoint, and espresso enjoyment incurs significant delay.

3. Filtering

Live data processing using filtering helps mitigate the noisiness of the temperature sensors. The moving average

strategy can be applied in live data collection. As new data points are collected, the moving average can be continuously

calculated and replaced with the raw data point.

VI. Conclusion
This study successfully introduces and demonstrates the effectiveness of a PID control system for enhancing the active

brew temperature control of a home espresso machine. Through the integration of thermocouples, a microcontroller, and

an SSR, the PID system provides precise and responsive temperature regulation during the espresso brewing process,

surpassing the performance of the default thermostat control with a temperature variance that is an order of magnitude

smaller. The mean, variance, and other experimental results affirm the superior temperature stability achieved by the

PID control system, effectively minimizing fluctuations and enabling rapid responses to changing conditions, making

21

for better consistency and accuracy in the espresso brewing quality.

This research contributes to espresso brewing optimization and underscores the potential of PID control in elevating

the performance of low-cost, consumer-grade coffee equipment. Overall, the findings presented in this study open

avenues for further exploration and application of PID control systems.

VII. Appendix
The embedded software utilized for all the testing and results discussed in the report is shown below in Listing 1.

Listing 1 PID Control Algorithm Embedded Software

1 #include <Arduino.h>

2 #include <SPI.h>

3

4 // set sampling time

5 const int Ts = 1; // milliseconds

6 int iteration = 1;

7

8 // Pin assignments

9 const int controlPin = 9;

10

11 // PID gains

12 const double Kp_brew = 1, Ki_brew = 0.001, Kd_brew = 10;

13 const double Kp_boiler = 10, Ki_boiler = 0.00001, Kd_boiler = 15;

14

15 // Voltage range

16 const double min_voltage = 1, max_voltage = 255;

17 Setpointsnts and thresholds

18 const double setpoint_brew = 95.0, setpoint_boiler = 106.0;

19 const double brew_threshold = 90.0, boiler_error_margin = 1.0, boiler_threshold =

20.0;

20

21

22 // Adafruit AD8495 instances (Thermocouple breakout board)

23 int analogPin_brew = A0; // Pin for brew thermocouple

24 int val_brew = 0; // variable to store the ADC value from A0

25 float temperature_brew; // Temperature value in celsius degree

22

26 float setup_gain_brew = 0.005;

27 float setup_ref_brew = 1.26313;

28

29 int analogPin_boiler = A1; // Pin for brew thermocouple

30 int val_boiler = 0; // variable to store the ADC value from A1

31 float temperature_boiler; // Temperature value in celsius degree

32 float setup_gain_boiler = 0.005;

33 float setup_ref_boiler = 1.26313;

34

35 // Variables for PID control

36 unsigned long startTime = 0;

37 double integral_brew = 0.0, integral_boiler = 0.0;

38 double previous_error_brew = 0.0, previous_error_boiler = 0.0;

39

40 // Variables for brew

41 int brew_counter = 0;

42 double temperature_brew_old = 22.0;

43

44 // Variables for boiler

45 bool boilerSetpointReached = false;

46 double temperature_boiler_old = 22.0;

47 int percentage_boiler;

48

49

50 void setup() {

51 Serial.begin(9600);

52 Serial.println("DONE.");

53 pinMode(controlPin , OUTPUT);

54 }

55

56 void loop() {

57 unsigned long currentTime = millis();

58 unsigned long elapsedTime = currentTime - startTime;

59

60 // double temperature_brew = readTemperature(thermocouple_brew , temperature_brew_old

23

);

61 // double temperature_boiler = readTemperature(thermocouple_boiler ,

temperature_boiler_old);

62 val_brew = analogRead(analogPin_brew); // read the input pin

63 double temperature_brew = (float(val_brew) * setup_gain_brew - setup_ref_brew)/0.005

;

64

65 val_boiler = analogRead(analogPin_boiler); // read the input pin

66 double temperature_boiler = (float(val_boiler) * setup_gain_boiler -

setup_ref_boiler)/0.005 ;

67

68 double error_brew = setpoint_brew - temperature_brew;

69 double error_boiler = setpoint_boiler - temperature_boiler;

70

71 integral_brew += error_brew;

72 integral_boiler += error_boiler;

73

74 double derivative_brew = error_brew - previous_error_brew;

75 double derivative_boiler = error_boiler - previous_error_boiler;

76

77 double output_brew = calculateOutput(Kp_brew, Ki_brew, Kd_brew, error_brew ,

integral_brew , derivative_brew);

78 double output_boiler = calculateOutput(Kp_boiler , Ki_boiler , Kd_boiler , error_boiler

, integral_boiler , derivative_boiler);

79

80 double scaled_output_brew = scaleOutput(output_brew , boiler_threshold);

81 double scaled_output_boiler = scaleOutput(output_boiler , boiler_threshold);

82

83 updateSetpointReached(error_boiler);

84

85 bool brewstarted = checkBrewStatus(temperature_brew);

86

87 updateControlOutput(brewstarted , scaled_output_brew , scaled_output_boiler);

88

89 updatePreviousErrors(error_brew , error_boiler);

24

90

91 iteration++;

92 delay(Ts);

93 }

94

95

96 double calculateOutput(double Kp, double Ki, double Kd, double error, double &integral

, double derivative) {

97 return Kp * error + Ki * integral + Kd * derivative;

98 }

99

100 double scaleOutput(double output, double threshold) {

101 if (output > threshold) {

102 return max_voltage;

103 } else {

104 return min_voltage;

105 }

106 }

107

108 void updateSetpointReached(double &error_boiler) {

109 percentage_boiler = abs(error_boiler) / setpoint_boiler * 100;

110 boilerSetpointReached = (percentage_boiler < boiler_error_margin);

111 }

112

113 bool checkBrewStatus(double temperature_brew) {

114 bool brewstarted = (temperature_brew > brew_threshold);

115 if (brewstarted) {

116 brew_counter++;

117 if (brew_counter == 1) {

118 integral_brew = 0;

119 }

120 }

121 return brewstarted;

122 }

123

25

124 void updateControlOutput(bool brewstarted , double scaled_output_brew , double

scaled_output_boiler) {

125 if (brewstarted) {

126 analogWrite(controlPin , scaled_output_brew);

127 } else {

128 analogWrite(controlPin , scaled_output_boiler);

129 }

130 }

131

132 void updatePreviousErrors(double error_brew , double error_boiler) {

133 previous_error_brew = error_brew;

134 previous_error_boiler = error_boiler;

135 }

26

Fig. 14 Portion of Official Rancilio Silvia Parts Diagram

The diagram in Figure 14 originates from the official Rancilio Silvia parts manual sourced from a well-known

espresso coffee enthusiast website [3].

VIII. Funding Source
Cornell’s Sibley School of Mechanical and Aerospace Engineering funded this project.

IX. Acknowledgments
Along with his role as supervisor, Professor Dmitry Savransky generously donated his Rancilio Silvia espresso

machine to this design project.

27

Additionally, espresso coffee has played a major role in the feasibility of finishing Cornell’s MAE degree program.

References
[1] Batali, M. E., Ristenpart, W. D., and Guinard, J. X., “Brew temperature, at fixed brew strength and extraction, has little impact on

the sensory profile of drip brew coffee,” Sci Rep, Vol. 10, No. 1, 2020, p. 16450. https://doi.org/10.1038/s41598-020-73341-4.

[2] Luuk, I., “Arduino Serial to Spreadsheet,” , 2021. URL https://circuitjournal.com/arduino-serial-to-spreadsheet.

[3] Love, W. L., “Rancilio Silvia M V1, V2, and V3 Parts Diagram,” , ???? URL https://support.wholelattelove.com/hc/en-

us/articles/4403765194131-Rancilio-Silvia-M-V1-V2-and-V3-Parts-Diagram.

28

https://doi.org/10.1038/s41598-020-73341-4
https://circuitjournal.com/arduino-serial-to-spreadsheet
https://support.wholelattelove.com/hc/en-us/articles/4403765194131-Rancilio-Silvia-M-V1-V2-and-V3-Parts-Diagram
https://support.wholelattelove.com/hc/en-us/articles/4403765194131-Rancilio-Silvia-M-V1-V2-and-V3-Parts-Diagram

	Introduction
	Design
	Parts selection
	Build
	Visual Walk-through
	Build Iteration Process

	PID Control Algorithm
	Proportional Gain (Kp)
	Integral Gain (Ki)
	Derivative Gain (Kd)
	Overall PID Controller Output
	PID Controller Tuning

	Control Algorithm Software
	Controller Tuning
	Gain Tuning Iteration Process

	Testing
	Embedded Software Integration
	Start Data Acquisition
	Heating
	Brewing
	Save-off Data

	Analysis
	Data Collection

	Results
	PID Performance
	Comparison to Default Thermostat
	Next Steps
	Hardware Solution for Thermocouple Placement
	Controller Tuning
	Filtering

	Conclusion
	Appendix
	Funding Source
	Acknowledgments

